
Kuantum Journal of Artificial Intelligence,
Robotics, Machine learning and Data Science

Research ArticleArticle Information

www.kuantumjournals.com

Efficient Usage of RAG Systems
in the World of LLMs
Priyank Jayantilal Rathod* and Anurag

Intel Corporation, Folsom, CA, USA

*Corresponding author: Priyank Jayantilal Rathod, Intel Corporation,
Folsom, CA, USA, E-mail: rathodpriyank@gmail.com

Received: June 13, 2024
Accepted: July 04, 2024
Published: July 06, 2024

Citation: Priyank Jayantilal Rathod. (2024)
Efficient Usage of RAG Systems in the World
of LLMs. Ku J of Art Int, Rob, Mach and Data
sci. 1(1): 007-010.

Copyright: ©2024 Priyank Jayantilal Rathod,
et al. This is an open-access article distrib-
uted under the terms of the Creative Com-
mons Attribution License, which permits un-
restricted use, distribution, and reproduction
in any medium, provided the original author
and source are credited.

2.Keywords

Retrieval-Augmented Generation (RAG), Embeddings,
Large Language Models, Natural Language Processing.

3. Introduction

“As of my last update in January 2022, I can’t provide
specific details about….” or “My knowledge has a cutoff date of
January 2022…” are common phrases that users of LLMs such
as ChatGPT, developed by OpenAI, encounter when they need
information on the latest events, developments, or technology
from present time frames.

LLMs can reason about wide-ranging topics, but their
knowledge is limited to the public data up to the specific time
they were trained. Retrieval-augmented generation (RAG) is a
cutting-edge technology that optimizes the output of language
models by referencing an authoritative knowledge base
outside of their training data sources. This approach enables
the creation of more accurate, informative, and trustworthy
responses. RAG involves augmenting user input with relevant
retrieved data to enhance response generation. This approach
leverages external knowledge sources to provide more accurate
and up-to-date information, ensuring that language models
generate responses that are grounded in reality. By combining
the capabilities of language models with the power of search
and retrieval, RAG enables the creation of more sophisticated AI
applications. RAG systems contain three key modules: retriever,
ranking, and generation. The retriever identifies relevant

passages from a knowledge source based on context, while the
ranking module sorts and prioritizes the retrieved passages.
The generation module then uses this information to generate
coherent and relevant text. Optimizing RAG for LLMs involves
refining techniques across retrieval, ranking, and generation
modules. This includes adapting network scale and architecture
to improve the overall flow of the RAG system. RAG ensures that
language models can access the most current and reliable facts,
allowing them to generate more accurate responses.

Moreover, it provides users with transparent and trustworthy
sources, enabling them to verify the authenticity of the generated
responses. This approach has far-reaching implications for
industries such as customer service, education, and healthcare,
where accuracy and reliability are paramount.

4. Methodology

Introduced and pioneered by Lewis et al. in the paper
[1], Retrieval-Augmented Generation (RAG) models are an
approach that synergizes pre-trained parametric and non-
parametric memory for enhanced language generation. It’s
a hybrid architecture that combines the strengths of pre-
trained generator models with a retrieval component that
accesses a dense vector index of external knowledge sources.
This architecture allows RAG to incorporate relevant external
knowledge into the generation process dynamically. Figure 1
gives a high-level architecture of RAG-based LLM applications.
The model operates by first using a query encoder to retrieve
top-K documents from the non-parametric memory based on

007

1.Abstract
The integration of Retrieval-Augmented Generation (RAG) systems with Large Language Models (LLMs) has

revolutionized the field of Natural Language Processing (NLP). By leveraging RAG techniques, LLMs can access a
broader range of information, improve coherence, and enhance the relevance of generated text. This paper explores
the efficient usage of RAG systems in LLMs, highlighting their benefits, applications, and future implications.

www. kuantumjournals.com/KJAIRMLDS

Kuantum Journal of Artificial Intelligence,Robotics, Machine learning and Data Science Volume 1 | Issue 1

the input query, and a generator then uses these documents as
additional context to produce the final output (represented as
Retrieval Tool and LLM, respectively in Figure 1).

Figure 1: RAG-based application architecture.

RAG has two main components, working in tandem to
leverage both parametric (learned during training) and
non-parametric (external knowledge bases) memory:

4.1. Retrieval component

The input query (e.g., a question or prompt) is first
processed by a query encoder, typically a pre-trained
transformer model. This encoder transforms the input
query into a dense vector representation. Alongside
the query encoder, RAG utilizes a dense vector index of
documents from an external knowledge source. Each
document in the index is represented by a dense vector,
which is pre-computed using a document encoder
(another transformer model) and stored for efficient
retrieval. RAG performs a Maximum Inner Product
Search between the query vector and the document
vectors in the index to retrieve relevant documents
based on the input query. This process identifies the
top-K documents whose vector representations have the
highest inner product (similarity) with the query vector.
Act as information gatekeepers, searching through a
large corpus of data to find relevant information for text
generation.

4.2. Generative component

Synthesizes the retrieved information into coherent
and contextually relevant text. The retrieved documents
and the original input query are fed into a pre-trained
model, which serves as the generator in the RAG
architecture. The generator combines the context from
the input query and the retrieved documents to generate
a response informed by external knowledge.

RAG models can operate in RAG-Sequence and RAG-
Token [1]. The same retrieved documents create the
entire output sequence in RAG-Sequence. In RAG-Token,
different documents can be used to make various output
parts. RAG models are trained end-to-end, allowing both
the retriever and generator components to be fine-tuned
on downstream tasks. This training approach enables
the retriever to learn which documents are most helpful
in generating accurate responses, while the generator
learns to incorporate the retrieved knowledge effectively.
The training objective is typically the negative log-
likelihood of the target sequence given the input and
the retrieved documents. This objective encourages
the model to generate coherent responses relevant to

the input and factually accurate responses based on the
retrieved knowledge.

5. Building Blocks for an Efficient RAG System

5.1. Efficient prompts

Prompts or Prompt engineering is designing and
crafting input prompts or queries to generative AI
models to elicit desired outputs or responses. Research
shows that mastering prompt engineering enhances the
quality of information obtained from AI tools, thereby
improving learning efficiency and task completion [2].
One of the challenges of working with LLMs is generating
high-quality, contextually appropriate responses with
minimal data. Transforming input prompts into formats
that are more easily understood by the models, such as
using techniques like Query.

Transformation Module (QTM) that refines input
prompt sentences into more comprehensible forms for
LLMs as proposed in this paper [3] makes it possible to
achieve better performance from LLMs without the need
for extensive additional training data or fine-tuning.
The prompt’s choice of words, format, and context can
significantly influence the generated content. Be Clear
and Specific, Specify the Format, Add Context, Use
Examples, Control the Tone, Ask the Model to Think Step
by Step, Use Keywords, Provide Constraints, Iterate and
Refine.

5.2. Right Embedding Model: Retrieval-augmented
generation is centered around embeddings [4]. Research
suggests how significant word embeddings can be in
improving the performance in practical information
retrieval scenarios [5]. The MTEB [6] Leaderboard on
Hugging Face [7] is a valuable resource for exploring
the suitable embedding models to employ. The overall
MTEB score gives a general idea of the top-performing
embedding model, but it’s best to sort the models by
column on the leaderboard for the specific task one is
interested in. Although benchmarks are a helpful starting
point, remember that these outcomes are self-reported
and may not fairly represent the data you are working
with.

Given that the MTEB datasets are freely accessible, it is
also probable that specific models will use them as part of
their training set. It is best to test a model on your dataset
even if one decides on it based on benchmark results.

5.3. State-of-the-art LLM

The evolution of large language models (LLMs) took
a significant turn with the introduction of transformer
models [8] in 2017. These models, characterized by their
encoder-decoder architecture, revolutionized natural
language processing (NLP) by enhancing the ability
of machines to understand context and generate text.
Transformers introduced two key innovations: word

008

www. kuantumjournals.com/KJAIRMLDS

Kuantum Journal of Artificial Intelligence,Robotics, Machine learning and Data Science Volume 1 | Issue 1

embeddings, which allowed models to grasp the meaning
of words within their context, and attention mechanisms,
which enabled models to determine the relevance of
different words or phrases within a sentence. The first
notable implementation of transformer technology
was in models like GPT [9] (Generative Pre-trained
Transformer) and BERT [10] (Bidirectional Encoder
Representations from Transformers). GPT, with its
ability to generate coherent and contextually relevant
text, and BERT, focusing on understanding the context
of words in a sentence, set new standards for what LLMs
could achieve. The release of GPT-3 by Open AI in 2020,
with its 175 billion parameters, marked a watershed
moment for LLMs. GPT-3’s vast size and sophisticated
architecture allowed it to perform a wide range of tasks
with minimal task-specific training, from writing essays
to generating code. The advent of transformer models has
fundamentally changed the landscape of NLP by enabling
a more nuanced understanding and generation of human
language. This evolution has led to the development of
increasingly powerful LLMs, culminating in state-of-
the-art capabilities.

6. Factors to Consider for RAG

•	 Retrieval Average: RAG is a retrieval task, so one
should pick the best retrieval model for their
application. Taking the MTEB Leaderboard as a
reference and focusing on the Retrieval Average
column, we can find the best scoring models that
can be used for RAG. This column represents the
average Normalized Discounted Cumulative Gain
(NDCG) [11] across several datasets. NDCG is a
standard metric for measuring retrieval systems’
performance. A higher NDCG indicates a model
that better ranks relevant items in the retrieved
results list.

•	 Model Size: The model’s size (usually in GB) is the
memory footprint of the particular model. It gives
an idea of the computational resources required to
run the model. While retrieval performance scales
with model size, it is essential to note that model
size also directly impacts latency. The latency-
performance trade-off becomes especially
important in a production setup.

•	 Maximum Tokens: The fundamental data units
that LLMs process are tokens. Based on the
tokenization method, a token in the context of text
can be a word, a sub word, or a letter. Each model
has a token limit, which is the number of tokens
that an LLM can process in one transaction, and
this limit can influence the performance of LLMs.
Maximum tokens for RAG is the number of tokens
compressed into a single embedding. As this paper
[12] pointed out, LLMs exhibit a significant drop in
reasoning performance as input length increases,

even at lengths much shorter than their technical
maximum.

•	 Embedding Dimensions: It is the length of the
embedding vector. Smaller embeddings offer
faster inference and are more storage-efficient,
while more dimensions can capture nuanced
details and relationships in the data. Ultimately,
we want a good trade-off between capturing the
complexity of data and operational efficiency.

7. Future Discussion

While RAG represents a significant advancement in
LLMs, several research gaps and opportunities for future
work remain:

•	 Retrieval Component Optimization: RAG’s
performance is contingent on the effectiveness
of the retrieval component. Challenges such as
retrieval collapse, where the model retrieves the
same documents regardless of the input, highlight
the need for improved retrieval mechanisms and
training strategies.

•	 Keyword-Based Retrieval: RAG’s effectiveness
is limited by its reliance on keyword searches,
which may not capture the complexity of specific
queries or the relevance of documents for abstract
concepts.

•	 Scalability and Efficiency: The computational
cost of retrieving documents from large external
databases poses scalability challenges, especially
for real-time applications. Future research could
explore more efficient retrieval methods and
indexing techniques to mitigate these challenges.

•	 Domain-Specific Applications: Investigating the
application of RAG in domain-specific contexts,
such as medical or legal NLP tasks, could reveal
new challenges and opportunities for leveraging
domain-specific knowledge bases.

•	 Handling Ambiguity and Uncertainty: RAG’s
reliance on external knowledge sources introduces
the risk of propagating biases or inaccuracies
present in these sources. Further research is
needed to develop mechanisms for handling
ambiguity, uncertainty, and potential biases in
retrieved content.

•	 Hallucinations: While RAG can reduce the
occurrence of hallucinations, it is not a
comprehensive solution to the problem of AI
models generating inaccurate information

8. Conclusion

In conclusion, Retrieval-Augmented Generation (RAG)
emerges as a transformative approach in Large Language
Models (LLMs), addressing the critical challenge of

009

www. kuantumjournals.com/KJAIRMLDS

Kuantum Journal of Artificial Intelligence,Robotics, Machine learning and Data Science Volume 1 | Issue 1

keeping AI-generated responses current and factually
accurate. This technology leverages a multilateral system
comprising retrieval, ranking, and generation modules to
incorporate real-time data into the response generation
process dynamically. The methodology underscores the
synergy between pre-trained generator models and a
retrieval component, facilitating the creation of responses
that are not only contextually relevant but also grounded
in factual accuracy. Efficient prompts, appropriate
embedding models, and the selection of advanced LLMs
are essential components to optimize RAG systems. The
advantages obtained from RAG are multifold, such as
enhanced factual accuracy, dynamic knowledge access,
and improved interpretability, which collectively bolsters
AI’s trustworthiness and applicability in various sectors.
This paper identifies pivotal areas for future research,
including optimizing the retrieval component, exploring
domain-specific applications, and developing strategies
to address scalability, efficiency, and mitigating
biases. The potential of RAG to reduce hallucinations
in AI-generated content, while not a panacea, marks a
significant step forward in the quest for more reliable
and accurate AI systems. As the technology continues to
evolve, it promises to revolutionize how we interact with
and rely on AI for information retrieval.

9. References

1.	 Patrick Lewis, Ethan Perez, Aleksandra Piktus, et
al. (2020) Retrieval-augmented generation for
knowledge-intensive NLP tasks. In Proceedings
of the 34th International Conference on Neural
Information Processing Systems (NIPS ‘20).
Curran Associates Inc., Red Hook, NY, USA, Article
793, 9459-9474.

2.	 M Wang, M Wang, X Xu, et al. (2024) Unleashing
ChatGPT’s Power: A Case Study on Optimizing
Information Retrieval in Flipped Classrooms
via Prompt Engineering. IEEE Transactions on
Learning Technologies. 17: 629-641.

3.	 D Park, G-t An, C Kamyod et al. (2023) A Study on
Performance Improvement of Prompt Engineering
for Generative AI with a Large Language Model.
Journal of Web Engineering. 22: 1187-1206.

4.	 Jurafsky Daniel, H James Martin. (2000) Speech
and language processing : An introduction to
natural language processing, computational
linguistics, and speech recognition. Upper Saddle
River, N.J.: Prentice Hall.

5.	 Galke L, Saleh A, Scherp A. (2017) Word embeddings
for practical information retrieval. In: M Eibl, M
Gaedke (Eds.). INFORMATIK. 2155-2167.

6.	 Niklas Muennighoff, Nouamane Tazi, Loic Magne,
et al. (2023) MTEB: Massive Text Embedding
Benchmark. In: Proceedings of the 17th Conference

of the European Chapter of the Association for
Computational Linguistics, pages 2014–2037,
Dubrovnik, Croatia. Association for Computational
Linguistics.

7.	 https://huggingface.co/spaces/mteb/leaderboard

8.	 Vaswani A, Shazeer N, Parmar N, et al. (2017)
Attention is all you need. Advances in Neural
Information Processing Systems. 5999-6009.

9.	 Radford A, Narasimhan K. (2018) Improving
language understanding by generative pre-
training.

10.	 Devlin J, Chang MW, Lee K, et al. (2019) BERT:
Pretraining of deep bidirectional transformers
for language understanding. NAACL HLT 2019 -
2019 Conference of the North American Chapter
of the Association for Computational Linguistics:
Human Language Technologies - Proceedings of
the Conference, 1(Mlm), 4171-4186.

11.	 K Jarvelin J Kekalainen. (2002) Cumulated
gain-based evaluation of IR techniques. ACM
Transactions on Information Systems (TOIS).
20(4):422-446.

12.	 Levy M, Jacoby A, Goldberg Y. (2024) Same task,
more tokens: The impact of input length on the
reasoning performance of large language models.
ArXiv, abs/2402.14848.

010

